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ABSTRACT
Pancreatic-cancer-patient tumor specimens were initially established subcutaneously in NOD/SCID mice immediately after surgery. The

patient tumors were then harvested from NOD/SCID mice and passaged orthotopically in transgenic nude mice ubiquitously expressing red

fluorescent protein (RFP). The primary patient tumors acquired RFP-expressing stroma. The RFP-expressing stroma included cancer-

associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). Further passage to transgenic nude mice ubiquitously expressing

green fluorescent protein (GFP) resulted in tumors that acquired GFP stroma in addition to their RFP stroma, including CAFs and TAMs as

well as blood vessels. The RFP stroma persisted in the tumors growing in the GFP mice. Further passage to transgenic nude mice

ubiquitously expressing cyan fluorescent protein (CFP) resulted in tumors acquiring CFP stroma in addition to persisting RFP and GFP

stroma, including RFP- and GFP-expressing CAFs, TAMs and blood vessels. This model can be used to image progression of patient

pancreatic tumors and to visually target stroma as well as cancer cells and to individualize patient therapy. J. Cell. Biochem. 113: 2290–2295,

2012. � 2012 Wiley Periodicals, Inc.
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T he athymic, T-cell-deficient, nude mouse has made a very

important contribution to cancer research in that it enabled

the systemic serial transplantation of human tumors and cell lines

[Rygaard and Povlsen, 1969]. Our laboratory pioneered surgical

orthotopic implantation (SOI) metastatic nude-mouse models of

patient tumor specimens in the early 1990s [Fu et al., 1991, 1992].

These orthotopic mouse models of patient tumors are more patient-

like, especially with regard to metastasis, than ectopic subcutaneous

models [Rygaard and Povlsen, 1969; Pickard et al., 1975; Giovanella

et al., 1978; Nowak et al., 1978; Bailey et al., 1980; Selby et al., 1980;

Fiebig et al., 1984, 1987; Sharkey and Fogh, 1984; Steel, 1984;

Hwang et al., 2003; Embuscado et al., 2005; Rubio-Viqueira et al.,

2006; Garber, 2007; Talmadge et al., 2007; Bertotti et al., 2011]. In

our initial development of SOI nude mouse models of patient

tumors, we achieved take rates of 65% for colon cancer [Fu et al.,

1991] and 100% for pancreatic cancer. Subsequently, the NOD/SCID

mouse, was developed [Shultz et al., 1995]. This mouse is deficient in

T-, B- and NK cells and allows for higher take rates of patient tumors

including 87% for colorectal cancer liver metastasis [Bertotti et al.,

2011]. Patient pancreatic tumors have been transplanted to NOD-

SCIDmice at high frequency [Kim et al., 2009, 2011]. However, these

models are limited with regard to studying the tumor microenvi-

ronment as well as imaging.

The use of fluorescent proteins for imaging in vivo was pioneered

by out laboratory and has been particularly useful to study tumor

growth and progression [Hoffman and Yang, 2006a, b; Hoffman,

2005]. With the use of multiple colored fluorescent proteins,

we developed imaging of the tumor microenvironment (TME) by

color-coding cancer and stromal cells [Yang et al., 2003, 2004,

2007, 2009; Hoffman and Yang, 2006b; Suetsugu et al., 2011,

2012]. With the use of color-coded imaging technology, we

have previously demonstrated the essential role of tumor-associated
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host cells in tumor progression and metastasis [Bouvet et al.,

2006].

The present study utilizes a pallet of multicolored fluorescent

proteins to image the recruitment over time of stromal cells,

including cancer-associated fibroblasts (CAFs) and tumor-associat-

edmacrophages (TAMs) by pancreatic-cancer-patient tumors grown

orthotopically in three types of transgenic nude mice, each

expressing a different color fluorescent protein (Yang et al.,

2004; Yang et al., 2009; Tran Cao et al., 2009). This study allows for

the first time the visualization and demonstration of the persistence

of the TME of patient tumors as well and their fluorescence imaging

in mouse models.

MATERIALS AND METHODS

SPECIMEN COLLECTION

All patients provided informed consent and samples were procured

and the study was conducted under the approval of the Institutional

Review Board of the MD Anderson Cancer Center.

GFP, RFP, AND CFP MICE

Transgenic nude C57/B6-GFP, RFP, and CFP mice were obtained

from AntiCancer, Inc. (San Diego, CA). These transgenic nude mice

express the fluorescent protein gene under the control of the chicken

b-actin promoter and cytomegalovirus enhancer. Most of the tissues

from these transgenic mice, with the exception of erythrocytes and

hair, fluoresce under proper excitation light [Yang et al., 2004; Tran

Cao et al., 2009; Yang et al., 2009].

ANIMAL CARE

The transgenic nude mice were bred and maintained in a HEPA-

filtered environment at AntiCancer, Inc. with cages, food, water, and

bedding sterilized by autoclaving. All surgical procedures and

imaging were performed with the animals anesthetized by

intramuscular injection of a ketamine mixture. All animal studies

were conducted in accordance with the principles of and procedures

outlined in the NIH guide for the care and use of laboratory animals

under assurance number A3873-1.

ESTABLISHMENT OF TUMORGRAFT MODEL (F1) OF PANCREATIC

CANCER PATIENT TUMORS

Pancreas cancer patient tumor tissue was obtained at surgery and

cut into 3-mm3 fragments and transplanted subcutaneously in NOD/

SCID mice (Kim et al., 2009, 2011).

ORTHOTOPIC TUMORGRAFT (F2) OF PANCREATIC CANCER PATIENT

TUMORS IN TRANSGENIC RFP NUDE MICE

The F1 tumors from NOD/SCID mice were harvested and cut into

3-mm3 fragments and transplanted orthotopically [Hoffman, 1999]

in 6-week-old transgenic nude RFP mice (Yang et al., 2009) (F2

model).

ORTHOTOPIC TUMORGRAFT (F3) OF PANCREATIC CANCER PATIENT

TUMORS IN TRANSGENIC GFP NUDE MICE

The F2 tumors were harvested from the RFP nude mice and were cut

into 3-mm3 fragments and transplanted orthotopically [Hoffman,

1999] in 6-week-old transgenic nude GFP mice (Yang et al., 2009)

(F3 model).

ORTHOTOPIC TUMORGRAFT (F4) OF PANCREATIC CANCER PATIENT

TUMORS IN TRANSGENIC CFP NUDE MICE

The F3 tumors were harvested from the GFP nude mice and cut into

3-mm3 fragments and transplanted orthotopically [Hoffman, 1999]

in 6-week-old transgenic nude CFP mice (Tran Cao et al., 2009)

(F4 model).

TUMOR IMAGING

The OV100 variable magnification Small Animal Imaging System

[Yamauchi et al., 2006], the FV1000 confocal microscope

[Uchugonova et al., 2011], and the MVX10 long-working distance

fluorescence dissecting microscope [Kimura et al., 2010], all from

Olympus Corp. (Tokyo, Japan), were used in this study.

RESULTS AND DISCUSSION

ENGRAFTMENT OF PATIENT TUMORS (F1) IN NOD/SCID MOUSE

A flow diagram experimental protocols is shown (Fig. 1A). Human

pancreatic-cancer patient tumors were initially transplanted

subcutaneously in NOD/SCID mice. Tumors were detected by

day-30. Tumors were harvested from the NOD/SCID mice.

RFP HOST STROMAL CELLS INFILTRATE ORTHOTOPIC PANCREATIC

CANCER TUMORGRAFTS (F2)

The harvested human pancreatic cancer patient tumors from the

NOD/SCID mice were transplanted orthotopically in 6-week-old

transgenic RFP nude mice (F2 model). After 30 days, tumors were

imaged using the OV100 (Fig. 1B). The RFP stromal cells from the

RFP host mice formed a capsule around the F2 tumor (Fig. 1B)

and infiltrated into the central part of the tumor as well (Fig. 1C).

RFP-expressing TAMs could be visualized in the tumor (Fig. 1D).

GFP HOST STROMAL CELLS INFILTRATE THE ORTHOTOPIC

PANCREATIC CANCER TUMORGRAFTS TO FORM A TWO-COLOR

STROMA MODEL (F3)

The F2 tumor was harvested at day-30, cut into 3-mm3 pieces, and

transplanted orthotopically in 6-week-old transgenic GFP nude

mice (F3 model). After 30 days, tumors were imaged with the OV100

(Fig. 1E). The F2 tumor spread on the host GFP pancreas (Fig. 1F).

After 56 days, tumors were removed from the GFP nude mice. The

human pancreatic-cancer-patient tumors contained both RFP and

GFP stromal cells (Fig. 1G). The RFP stromal cells still persisted after

passage in the F3 tumorgraft. Under confocal microscopy with the

FV1000, RFP and GFP stromal cells were clearly visualized in the

tumor (Fig. 1H). GFP and RFP CAFs and TAMs were visualized

including in the central part of the tumor (Fig. 1H–J).

CFP HOST STROMAL CELLS INFILTRATE ORTHOTOPIC PANCREATIC

CANCER TUMORGRAFTS TO FORM A THREE-COLOR STROMA

MODEL (F4)

F3 tumors were harvested at day-56 and transplanted orthotopically

in 6-week-old nude CFP mice (F4 model). After 30 days, F4 tumors

were observed with theMVX10 long-working-distance fluorescence
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Fig. 1. A: Flow diagram of the experimental protocol. B: Orthotopic tumorgraft model (F2) of human pancreatic-cancer-patient tumor transplanted to RFP transgenic nude

mouse. Yellow arrow indicates host RFP nude mouse pancreas. Blue arrow indicates tumor with infiltrating RFP stroma (Bar¼ 10mm). Image taken with the Olympus OV100.

C: Human pancreatic tumor excised from RFP nude mouse with RFP stroma. The image is of a cross-section of the tumor. Blue arrow indicates RFP stroma (Bar¼ 10mm). Image

taken with the Olympus OV100. D: Visualization of RFP tumor-associated macrophages (TAMs) in the human pancreatic cancer patient tumor (F2). High-magnification image

taken with the Olympus FV1000 confocal microscope. Yellow arrows indicate RFP TAMs (Bar¼ 50mm). E: Orthotopic tumorgraft model (F3) of human pancreatic-cancer-

patient tumor growing in transgenic GFP nude mice for 30 days. Red arrow indicates host GFP nude mouse pancreas. Blue arrow indicates human pancreatic tumor with RFP

stroma (Bar¼ 10mm). Image taken with the Olympus OV100. F: Pancreatic tumor growing in GFP-host model for 56 days. Red arrow indicates host GFP nude mouse pancreas.

Blue arrow indicates human pancreatic tumor with RFPþGFP stroma (Bar¼ 10mm). Image taken with the Olympus OV100. G: Excised tumor with RFP and GFP stroma. The

image is of a cross-section of the tumor. Yellow arrow indicates RFP stroma. Green arrow indicates GFP stroma (Bar¼ 10mm). Image taken with the Olympus FV1000. H: Human

pancreatic-cancer-patient tumor (F3) with RFP and GFP stromal cells. Image was taken with the Olympus FV1000. Green arrows indicate GFP stromal cells from GFP mouse. Red

arrows indicate RFP stromal cells from RFP mouse. (Bar¼ 50mm) I: Human pancreatic-cancer-patient tumor with RFP stromal cells and GFP TAMs. (Bar¼ 100mm). Image taken

with the Olympus FV1000. J: High magnification image of (I). RFP stromal cells and GFP-TAMs are readily observed. (Bar¼ 30mm). Image taken with the Olympus FV1000.

2292 IMAGING THE MICROENVIRONMENT OF PATIENT TUMORS JOURNAL OF CELLULAR BIOCHEMISTRY



Fig. 2. A: Human pancreatic-cancer-patient tumor growing in CFP-host (F4). White arrow indicates host CFP nude mouse pancreas. Blue arrow indicates tumor. Image was

taken with the Olympus MVX10 microscope (Bar¼ 10mm). B: Human pancreatic-cancer-patient tumor (F4) (blue arrow) with RFP, GFP, and CFP stromal cells. Red arrow

indicates CFP pancreas. Image was taken with the MVX10 (Bar¼ 10mm). C: RFP, GFP, and CFP stromal cells were observed. Red arrow indicates RFP stromal cells. Green arrows

indicate GFP stromal cells. White arrows indicate CFP stromal cells (Bar¼ 100mm). Image taken with the FV1000 confocal microscope. D: RFP TAMs (red arrow) and GFP blood

vessel (green arrow) were observed in the F4 tumor (Bar¼ 100mm). Image taken with the Olympus FV1000 confocal microscope. E: GFP blood vessels (green arrows) in the F4

tumor. (Bar¼ 100mm). Image was taken with the FV1000 confocal microscope. F: RFP CAFs (yellow arrow) and GFP TAMs (green arrows) in the F4 tumor. White arrow indicates

CFP CAFs. (Bar¼ 30mm). Image was taken with the FV1000 confocal microscope.
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microscope (Fig. 2A,B). The excised F4 tumor was also observed

with the FV1000 confocal microscope (Fig. 2C–F). RFP-, GFP-,

and CFP-expressing stromal cells were observed in the human

pancreatic-cancer patient tumor (Fig. 2C). The RFP stroma persisted

after two passages and GFP stroma persisted after one passage in the

F4 model in CFP mice. RFP TAMs and CAFs (Fig. 2D,F) and GFP

blood vessels (Fig. 2D,E) still persisted in the human pancreatic-

cancer patient tumor after 2 and 1 passages, respectively (Fig. 2F).

We have thus demonstrated a newmouse model of cancer-patient

tumors, whereby stromal elements can be imaged using a pallet of

multi-color fluorescent proteins. The fluorescent stroma persisted

for at least two passages in the tumors growing in the transgenic

mice, indicating the intimacy of cancer cells and stroma. The

survival of stroma after transplantation was previously suggested

[Duda et al., 2004]. The results of the present study demonstrate the

serial transplantability of stroma. For example from the RFP mice,

TAMs and CAFs persisted from F2 to F4, suggesting they may be

proliferating along with the cancer cells in the tumor. From the GFP

mice, TAMs and CAFs and blood vessels were found in the tumor and

persisted to F4. The CFP mice contributed mostly CAFs to the tumor.

The fluorescent stroma allow the entire tumor to be imaged as well.

Both standard and novel cancer- and stroma-targeting agents can be

tested in this model and can be used for individualized therapy of

cancer patients.

The newmodels described in this report offer many opportunities.

For example, cell lines can be established from the tumors with

fluorescent stroma and the role of stroma in cell line establishment

can be imaged longitudinally.

The stromal cells of each fluorescent color can be isolated by

fluorescence-activated cell sorting (FACS) to further characterize

them.

Since the stroma carry genes for fluorescent proteins, it may be

possible to observe gene transfer from stromal cells to the cancer

cells. We have previously taken advantage of differential fluorescent

protein expression in cancer cells to demonstrate gene transfer

between cancer cells in vivo [Glinsky et al., 2006; Tome et al., 2009].

It should also be possible to determine if some of the fluorescent

stromal cells are derived from tissue-specific stem cells or

mesenchymal stem cells.

One of the most exciting opportunities directly inspired by

observations in the current study and enabled by the availability of

the color-coded panel of hosts, would be the analysis of the role,

requirements, and contribution of host stroma to metastatic

initiation and progression.
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